OGT is a glycosyltransferase found in the nucleus, cytoplasm, and mitochondria. It transfers the monosaccharide O-GlcNAc to over a thousand proteins, thus occupying a unique biological niche because all other mammalian glycosyltransferases act in the secretory pathway to assemble large oligosaccharides. OGT is one of the most conserved human proteins—and the most conserved human glycosyltransferase. While it is essential for cell growth and proliferation, its essential functions are not yet known. OGT is a proposed target for treating cancers and cardiometabolic disorders. Our goals are to understand OGT’s essential functions and to develop inhibitors to disrupt those functions. We are using structure, biochemistry, genetics, and -omics technologies to deconvolute OGT.

To read more about some of our work on OGT, please see the selected publications below.

SELECTED PUBLICATIONS

Hammel, F. A.; Payne, N. C.; Marando, V. M.; Mazitschek, R.; Walker, S. Identification of a Polypeptide Inhibitor of O-GlcNAc Transferase with Picomolar Affinity. J. Am. Chem. Soc. 2024. [PubMed Link] [Publisher Link]

Potter, S. C.; Gibbs, B. E.; Hammel, F. A.; Joiner, C. M.; Paulo, J. A.; Janetzko, J.; Levine, Z. G.; Fei, G. Q.; Haggarty, S. J.; Walker, S. Dissecting OGT’s TPR domain to identify determinants of cellular function. Proc. Natl. Acad. Sci. U. S. A. 2024, 121 (22), e2401729121. [PubMed Link] [Publisher Link]

Levine, Z. G.; Potter, S. C.; Joiner, C. M.; Fei, G. Q.; Nabet, B.; Sonnett, M.; Zachara, N. E.; Gray, N. S.; Paulo, J. A.; Walker, S. Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Proc. Natl. Acad. Sci. U. S. A. 2021, 118 (4), e2016778118. [PubMed Link] [Publisher Link]

Tan, Z.-W.; Fei, G.; Paulo, J. A.; Bellaousov, S.; Martin, S. E. S.; Duveau, D. Y.; Thomas, C. J.; Gygi, S. P.; Boutz, P. L.; Walker, S. O-GlcNAc regulates gene expression by controlling detained intron splicing. Nucleic Acids Res. 2020, 48 (10), 5656-5669. [PubMed Link] [Publisher Link]

Joiner, C. M.; Levine, Z. G.; Aonbangkhen, C.; Woo, C. M.; Walker, S. Aspartate Residues Far from the Active Site Drive O-GlcNAc Transferase Substrate Selection. J. Am. Chem. Soc. 2019, 141 (33), 12974-12978. [PubMed Link] [Publisher Link]

Martin, S. E. S.; Tan, Z.-W.; Itkonen, H. M.; Duveau, D. Y.; Paulo, J. A.; Janetzko, J.; Boutz, P. L.; Törk, L.; Moss, F. A.; Thomas, C. J.; Gygi, S. P.; Lazarus, M. B.; Walker, S. Structure-Based Evolution of Low Nanomolar O-GlcNAc Transferase Inhibitors. J. Am. Chem. Soc. 2018, 140 (42), 13542-13545. [PubMed Link] [Publisher Link]

Levine, Z. G.; Fan, C.; Melicher, M. S.; Orman, M.; Benjamin, T.; Walker, S. O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix. J. Am. Chem. Soc. 2018, 140 (10), 3510-3513. [PubMed Link] [Publisher Link]

Janetzko, J.; Trauger, S. A.; Lazarus, M. B.; Walker, S. How the glycosyltransferase OGT catalyzes amide bond cleavage. Nat. Chem. Biol. 2016, 12 (11), 899-901. [PubMed Link] [Publisher Link]

Ortiz-Meoz, R. F.; Jiang, J.; Lazarus, M. B.; Orman, M.; Janetzko, J.; Fan, C.; Duveau, D. Y.; Tan, Z.-W.; Thomas, C. J.; Walker, S. A Small Molecule That Inhibits OGT Activity in Cells. ACS Chem. Biol. 2015, 10 (6), 1392-1397. [PubMed Link] [Publisher Link]

Lazarus, M. B.; Jiang, J.; Kapuria, V.; Bhuiyan, T.; Janetzko, J.; Zandberg, W. F.; Vocadlo, D. J.; Herr, W.; Walker, S. HCF-1 Is Cleaved in the Active Site of O-GlcNAc Transferase. Science 2013, 342 (6163), 1235-1239. [PubMed Link] [Publisher Link]

Lazarus, M. B.; Jiang, J.; Gloster, T. M.; Zandberg, W. F.; Whitworth, G. E.; Vocadlo, D. J.; Walker, S. Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Nat. Chem. Biol. 2012, 8 (12), 966-968. [PubMed Link] [Publisher Link]

Lazarus, M. B.; Nam, Y.; Jiang, J.; Sliz, P.; Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 2011, 469 (7331), 564-567. [PubMed Link] [Publisher Link


Banner image: crystal structure of human OGT with our most recent inhibitor, OSMI-4, bound in the active site, courtesy of Dr. Cassandra Joiner